Second Euro-mediterranean Rendez-vous on Energy

January 6th 2015 European Parliament, Brussels

Economics of trans-mediterranean interconnections by Arnaud RENAUD, Artelys, CEO

Artelys

OPTIMIZATION SOLUTIONS

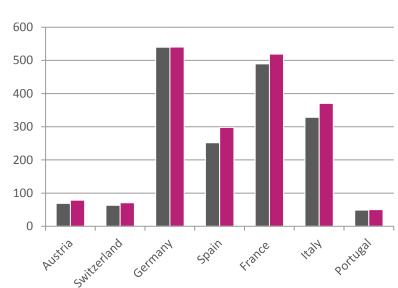
CONTENT

\rightarrow Questions

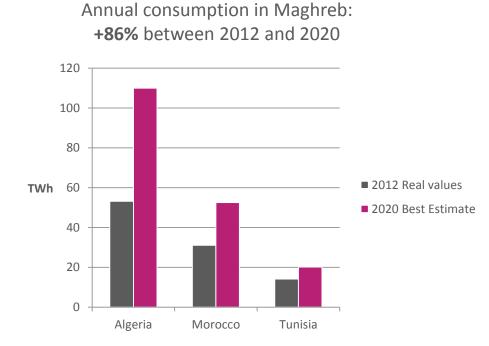
- What are the **possible** trans-Mediterranean interconnection projects by 2020?
- What is their economic viability for the electricity production sector?
- Does their profitability persist by 2030, for ENTSO-E scenarios?

\rightarrow Contents of the talk

- The power system in 2020
- Modeling the power system
- Studied interconnection investments
- Savings and profitability of interconnections by 2020
- Robustness of interconnections economics by 2030
- Conclusion

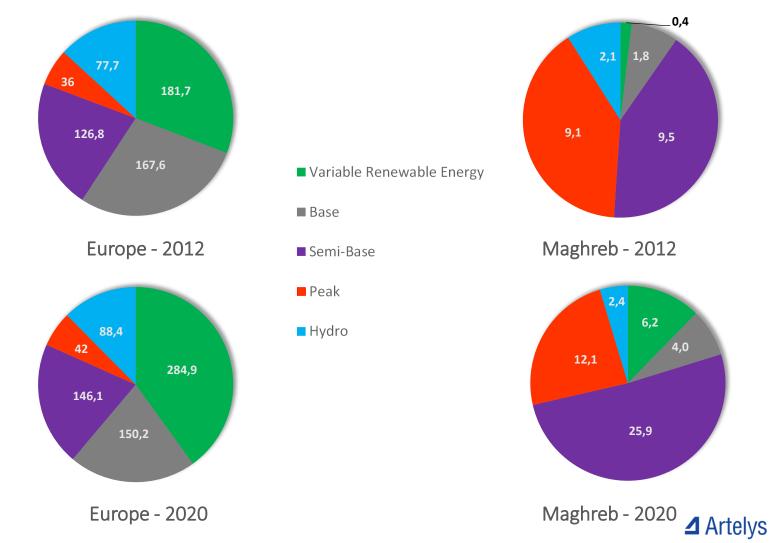


THE POWER SYSTEM IN 2020



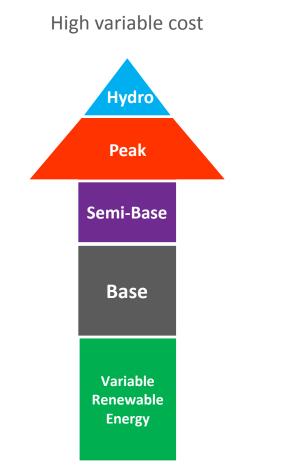
THE POWER SYSTEM IN 2020

Annual electricity consumption grows much faster in Maghreb than in Europe


Annual consumption in Europe: +8% between 2012 and 2020

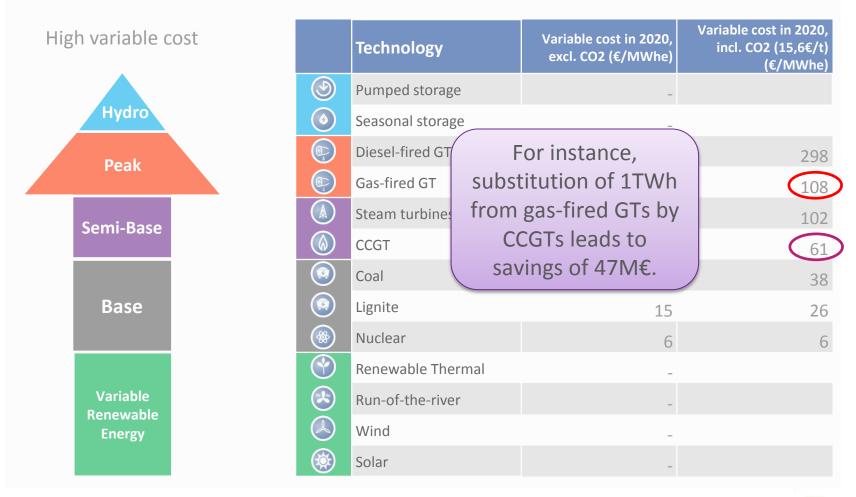
THE POWER SYSTEM IN 2020

→ Structurally different generation fleets (installed capacities in GW)


- → Performed simulations minimize the variable costs of production (including fuel costs and CO2 costs) for the whole zone, in order to meet the system needs:
 - Electricity consumption
 - Reserve needs, to face unplanned disturbance
 - Load following

- → While taking into account:
 - Variable renewable energy (VRE) production profile
 - Hydro storage short and long-term management
 - Thermal generators availability profiles
 - Physical constraints of production plants (maximum gradients and minimal power for nuclear and coal)
 - Energy losses due to interconnections

→ Production facilities in each country are represented **by fleets**

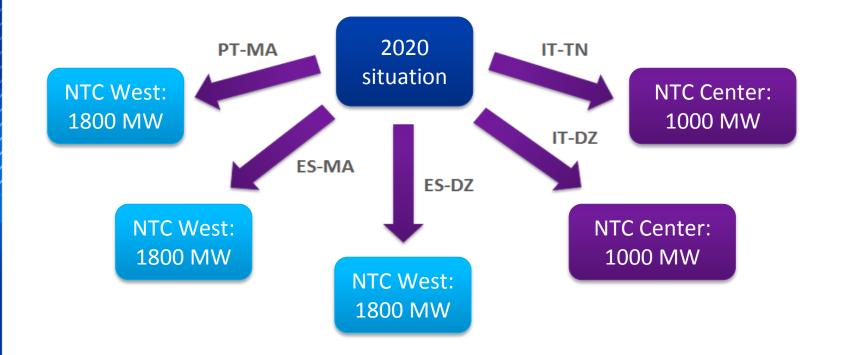

	Technology	Variable cost in 2020, excl. CO2 (€/MWhe)	Variable cost in 2020, incl. CO2 (15,6€/t) (€/MWhe)
٩	Pumped storage	-	
٥	Seasonal storage	-	
	Diesel-fired GT	287	298
	Gas-fired GT	101	108
	Steam turbines	95	102
	ССБТ	57	61
	Coal	24	38
	Lignite	15	26
	Nuclear	6	6
	Renewable Thermal	-	
	Run-of-the-river	-	
	Wind		
	Solar	-	

Low variable cost

Source: IEA World Energy Outlook 2013 and DECC

→ Production facilities in each country are represented by fleets

Low variable cost


Source: IEA World Energy Outlook 2013 and DECC

STUDIED INTERCONNECTION INVESTMENTS

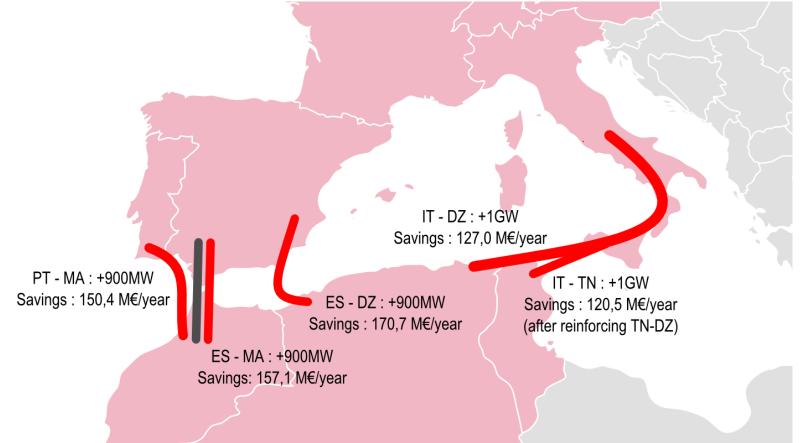
STUDIED INTERCONNECTION INVESTMENTS

Simulations show that:

- gains from investments in western and central corridors are additive;
- gains from investments between FR and ES and in western corridors are additive

STUDIED INTERCONNECTION INVESTMENTS

→ Approach:


- Investments profitability by 2020
 - Using installed capacity and consumption data from ENTSO-E « Best Estimate Scenario » and estimations from Maghrebian operators
- Study the robustness of the results by 2030, using contrasted scenarios
 - Conservative scenario, built using ENTSO-E scenario "Slow progress" and additional data from Maghrebian operators
 - Sustainable scenario, built using ENTSO-E scenario "Green transition" and additional data from Maghrebian operators

→ Annual savings:

 \rightarrow Savings obtained with an interconnection come from:

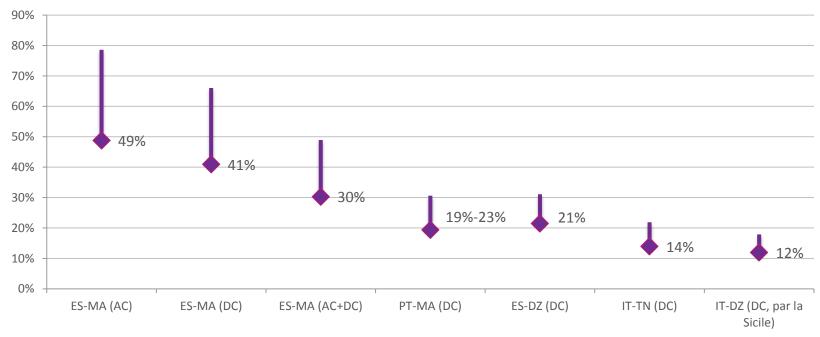
- Better use of cheaper production
 - Cheap baseload and semi-baseload production from Europe replaces peak fleet production from North Africa
- Variable renewable energy is better integrated in the whole system
 - Interconnections allow a reduction of VRE curtailment
- Increase of the security of supply
 - Interconnections allow a reduction of loss of load, but this is not observed in our simulations as capacity expansion planning of each North African country is designed to cope with national peak

 \rightarrow Economic profitability of each investment realized alone, by 2020:

	PT – MA (DC)	ES - MA (AC)	ES - MA (DC)	ES - MA (AC+DC)	ES – DZ (DC)	IT – TN (DC)	IT – DZ (DC via Sicily)
Additional capacity (MW)	900	900	900	900	900	1000	1000
Reinforcement costs Europe (M€)	75,6 - 193,5	117	117	117	117	282,4*	282,4*
Reinforcement costs Maghreb (M€)	63,7	63,7	63,7	63,7	67,3	104	31,9
Line + Converters costs (M€)	478,1	133,1	192,6	320,9	564,8	388,9	600,5
Initial investment costs (M€)	617,4 - 735,3	313,8	373,3	501,6	749,1	775,3	914,8
Operation and maintenance costs (M€/year)	7,75	4,0	4,2	5,1	9,7	10,5	16,5
Savings (M€/year)	150,4	157,1	157,1	157,1	170,7	120,5	127,0
Immediate profitability rate (%)	19,4% - 23,1%	48,8%	41,0%	30,3%	21,5%	14,2%	12,1%

* this cost covers the upgrade of internal networks in order to cope with maximum power flows in both directions, throughout the year

→ Economic profitability of two **simultaneous** reinforcements on the western corridor, by 2020


	ES-MA & PT –MA	ES-MA & ES-DZ
Initial investment costs (M€)	868,4 - 982,3	882,2
Operation and maintenance costs (M€/year)	12,2	14,8
Savings (M€/year)	229,1	298,1
Immediate profitability rate (%)	22,1% - 25,0%	32,1%

ROBUSTNESS OF INTERCONNECTIONS ECONOMICS BY 2030

ROBUSTNESS OF INTERCONNECTIONS ECONOMICS BY 2030

Immediate profitability rate in 2020 (purple dots) and 2030 (lines)

CONCLUSION

CONCLUSION

- \rightarrow All studied investment projects are profitable by 2020.
- → Their profitability persists and grows in most scenarios by 2030.
- There is room for two simultaneous 1GW investments in the western corridor.
- → Cheap baseload and semi-baseload production from Europe replaces peak fleet production from North Africa in the Western corridor.

 \rightarrow In the central corridor, power exchanges are more balanced.

CONTACTS

Medgrid

38, avenue Hoche 75008 PARIS FRANCE

www.medgrid-psm.com

4 Artelys

OPTIMIZATION SOLUTIONS

Artelys France Artelys Canada

Artelys USA

12 rue du Quatre Septembre 75002 PARIS FRANCE 2001 rue Université, bureau 1700 H3A 2A6 – MONTRÉAL, QC CANADA

150 N Michigan Avenue, Suite 800 60601 – CHICAGO, IL ETATS-UNIS

support-AE-Medgrid@artelys.com

www.artelys.com

