Second Euro-mediterranean Rendez-vous on Energy

January 6th 2015 European Parliament, Brussels

Technology Issues for the Development of Mediterraneum Interconnections: present Status and Perspectives

Enrico Colombo CESI SpA

THE CABLE SYSTEM

- → Mediterraneum corridor for cable route
- → Technological challenges of a deep see design
- → Cable system technology
- → Market challenges at the target Years
- \rightarrow Horizon for commissioning

CABLE SYSTEM FEATURES AND ROUTE

- Submarine power cable system in bi-pole configuration
- →1000 MW HVDC

- → 600km long submarine cable (Centre Corridor)
- \rightarrow Water depth of up to 2500m
- → Seabed profile: 60% at depths > 1500m*
- * Romulo: 2x200 MW, 1485 m, 30/23 kg/m
- * SAPEI: 2x500 MW, 1640 m, 36/25 kg/m

TECHNOLOGICAL CHALLENGES OF A DEEP SEA CABLE DESIGN

\rightarrow The mechanical design

- conductor
- insulation
- lead sheath
- armour

- The design of cable laying methods and means
 - capability of vessel to handle:

- smallest possible outer diameter
- lowest possible weight
- high electric power transmittability
- high electrical stress withstandability
- ability of withstanding high tensile strength and of limiting water propagation following a possible fault (250bar)

- deep water cable lay
- cable catenary control
- cable touch down monitoring
- single vs. bundle lay
- very deep marine survey
- cable recovery

CABLE SYSTEM TECHNOLOGY

- → 400kV, 1400mm2 Al, mass impregnated-MI insulated cables for the near future (Year 2020), being this technology considered to be better proven for high depths
- → 320kV, 1600mm2 Al /400kV or 1400mm2 Al, with extruded insulation may become a priority for near future (Year 2020)
- → 500 kV, 1150mm2 Al, extruded for the more distant future (Year 2030), envisaging material technology advances and proven technology of cables and accessories by that date in a competitive market
- \rightarrow Cable site joints: location on the route

MARKET CHALLENGES FOR A 2X600 KM CABLE LINK

- Competing projects at the Target Years may have the potential to cause delays
 - availability of raw materials
 - limits to cable system production
 - factory production capacities
 - manufacturing slots availability
 - lead times compliance
 - testing facilities

INSTALLATION CHALLANGES FOR A 2X600 KM CABLE LINK

→ Cable lay vessels market

- Max. mechanical dynamic tensions at 2500m depths: 90 115 tonnes
- dynamic tension limits of the largest vessels currently on the market
 - cable ships: 55 65 tonnes
 - flexible pipelay vessels (100 550 tonnes)
- 1 x Cable Lay Vessel (up to 1500m depth)
- 1 x Flexible Pipelay Vessel (1500 ÷ 2500m)

HORIZON FOR COMMISSIONING

 \rightarrow Time to procure a complete bi-pole (2 x 600 km):

8* or 10** years

 tender activities: 	2 у
 pre-qualification activities: 	1.7 у
 project implementation: 	5** or 7* y
engin.and detailed marine survey:	1.2 y
cable manufacturing:	3* or 5** y
installation:	1.5* or 3.4** y
commissioning:	0.3 y
* two production lines working in parallel	
** only one production line engaged	

→ time for activities preliminary to those for the procurement

- licensing, permits and way leaves tasks: **2 years**
- booking-ahead period: 4 years

CONCLUSIVE REMARKS

→ Technology

- MI solution for the near future (2020)
- extruded 400/500 kV cables to become a priority for the more distant future (2030) envisaging material technology advances in a competitive market

\rightarrow Laying

- 1 x Cable Lay Vessel (up to 1500m)
- 1 x Flexible Pipelay Vessel (from 1500 2500m)

→0&M

- achieving a rapid repair or a guarantee of availability of a suitable repair vessel, within an agreed time frame.
- new design of ROVs may be required to support repair activities in deep water

